The reaction of the tertiary phosphine sulfides R_3PS (R = Ph, Me₂N or C₆H₁₁) with X₂ (X₂ = I₂, Br₂, IBr or ICl); structural characterisation of the CT complexes (Me₂N)₃PSI₂ and Ph₃PS(I_{0.89}Br_{0.11})Br and the ionic compound [{(Me₂N)₃PS}₂S]²⁺ 2[Br₃]⁻ DALTON FULL PAPER

Wendy I. Cross, Stephen M. Godfrey,* Sheena L. Jackson, Charles A. McAuliffe and Robin G. Pritchard

Department of Chemistry, University of Manchester Institute of Science and Technology, Manchester, UK M60 1QD. E-mail: stephen.m.godfrey@umist.ac.uk

Received 26th March 1999, Accepted 18th May 1999

The reactions of the tertiary phosphine sulfides R_3PS (R = Ph, Me_2N or C_6H_{11}) with X_2 (X = I or Br) and IX (X = Br or Cl) have been studied. Reaction of R_3PS with I_2 or IX results in quantitative isolation of the CT complexes R_3PSIX (X = I, Br or Cl), except for Ph₃PS with I_2 which produces the unusual compound (Ph₃PSI₂)₂I₂, which has been crystallographically characterised by earlier workers. The crystal structure of (Me₂N)₃PSI₂ has been determined and compared to Ph₃PSI₂, previously described. The greater d(I-I) for (Me₂N)₃PSI₂, 2.856(1) Å, compared to that of 2.823(1) Å for Ph₃PSI₂ clearly illustrates that d(I-I) in R_3PSI_2 compounds is sensitive to R, although this effect is less pronounced when compared to that of analogous R_3PSeI_2 compounds. The crystal structure of the product from the reaction of Ph₃PS with IBr has also been determined and represents the first example of a tertiary phosphine sulfide interhalogen CT complex. It has the formula Ph₃PS(I_{0.89}Br_{0.11})Br and is isomorphous with Ph₃PSI₂. The reaction of R₃PS with Br₂ is complex. In the case of Ph₃PS, phosphorus–sulfur bond cleavage occurs quantitatively to produce Ph₃PBr₂ and elemental sulfur. Reaction of (Me₂N)₃PS with Br₂ gives, as one product, [{(Me₂N)₃PS}₂S][Br₃]₂ in moderate (*ca.* 30%) yield. This unusual dication is compared to the previously reported [(But'₃PTe)₂Te][SbF₆]₂. Tricyclohexylphosphine sulfide reacts with Br₂ in solvents of low relative permittivity (Et₂O) to produce the 1:1 addition complex (C₆H₁₁)₃PSBr₂; however, dissolution of this material in solvents of higher relative permittivity results in phosphorus–sulfur bond cleavage to produce (C₆H₁₁)₃PBr₂ and elemental sulfur.

Introduction

The ability of tertiary phosphine chalcogenides to form addition compounds with dihalogens and interhalogens was first recognised by Zingaro and co-workers¹⁻⁵ in the early 1960s. In the case of tertiary phosphine selenides, reaction with IX (X = Cl, Br or I) appeared to produce the CT compounds R₃PSe–X–X where, in the case of the interhalogen complexes, the heavier halogen binds directly to the selenium atom, according to IR and UV/VIS spectroscopy.1-5 Solution studies concerning trialkylphosphine sulfides indicated similar results, i.e. 1:1 CT complex formation upon reaction with IX (X = Cl, Br or I). However, in the case of the reaction of triphenylphosphine sulfide with diiodine, an unusual 2:3 (Ph₃PS:I₂) adduct was isolated.⁶ The crystal structure of this adduct, the first reported for a tertiary phosphine sulfide-dihalogen complex, revealed two Ph₃PSI₂ units linked into pairs by a supporting I₂ molecule. The d(I-I) is significantly increased (2.85(1) Å) when compared to d(I-I) in solid diiodine (2.71 Å) indicating that electron density is being donated to the σ^* antibonding orbitals of the I_2 by the two Ph_3PSI_2 moieties. The conclusion of these workers was that, despite the fact that a 1:1 triphenylphosphine sulfide-diiodine adduct, Ph₃PSI₂, could be identified in solution, it could not be isolated in the solid state. It was therefore reasoned that, due to the poor donor ability of triphenylphosphine sulfide towards diiodine, a 2:3 adduct formed consisting of two Ph₃PSI₂ moieties and a supporting diiodine molecule.

The interaction of triphenylphosphine sulfide with diiodine has been independently re-examined by Sobczky and co-workers⁷ and Kaur and Lobana.^{8,9} Both groups reported the

formation of a 1:1 CT complex, although it was noted by Kaur and Lobana⁸ that Ph₃PS formed a 2:3 (Ph₃PS:I₂) complex in CCl₄ and a 1:1 complex in CH₂Cl₂, suggesting that the formation of the 1:1 complex is solvent dependent.

Very recently, the interaction of triphenylphosphine sulfide with diiodine has been studied by Bricklebank and coworkers¹⁰ using ³¹P-{¹H} NMR and UV/VIS spectroscopy. More significantly, the crystal structure of the 1:1 CT complex, Ph₃PSI₂, prepared from dichloromethane, was reported thus confirming the existence of the 1:1 CT adduct in the solid state. The d(P–S) for this compound, 1.998(2) Å, is rather short suggesting some retention of double bond character. However, d(I–I) for the complex, 2.823(1) Å, clearly illustrates lengthening of the I–I bond upon adduct formation when compared to that of free diiodine, as expected.

We are currently engaged in studying the interaction of a variety of tertiary phosphine chalcogenides with dihalogens and interhalogens and have found that, in the case of the reaction of R₃PSe with I₂ (R = Ph, Me₂N or Et₂N), 1:1 CT complexes result both in the solid state and in solution.¹¹ All three compounds have been studied crystallographically. The structural features of Ph₃PSeI₂ are generally very similar to those exhibited by Ph₃PSI₂. One notable difference however is d(I-I) for the two complexes, 2.823(1) and 2.881(3) Å for Ph₃PSI₂ and Ph₃PSeI₂, respectively. This greater lengthening of the diiodine bond in the tertiary phosphine selenide complex compared to the tertiary phosphine sulfide reflects the greater donor power of selenium compared to sulfur towards diiodine. The iodine–iodine bond length in the CT complexes R₃PSeI₂ is also sensitive to the nature of R. For example, as previously stated, d(I-I)

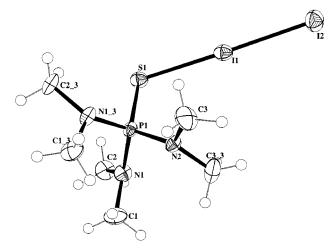
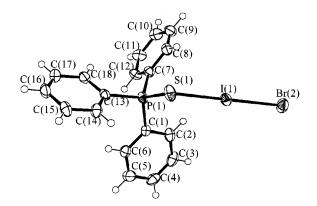


Fig. 1 The crystal structure of (Me₂N)₃PSI₂.

for Ph_3PSeI_2 is 2.881(3) Å whereas d(I-I) for the complex $(Et_2N)_3PSeI_2$ is 2.985(2) Å. This illustrates that the R groups on the parent tertiary phosphine significantly affect the donor power of the selenium atom towards diiodine, despite the fact that they are not directly bound to this atom. We have also investigated the reaction of dibromine with certain tertiary phosphine selenides. In the case of R_3PSe ($R = Me_2N$ or C_6H_{11}), T-shaped 1:1 adducts result, R₃PSeBr₂.¹² However, in the case of Ph₃PSe, whilst reaction of this tertiary phosphine selenide with dibromine in diethyl ether produces the T-shaped Ph3-PSeBr₂, the reaction product proved to be solvent sensitive; the same reaction performed in dichloromethane produced the unusual ionic dinuclear compound [Ph3PSeBrSePPh3]Br. 2CH₂Cl₂.¹³ A further anomaly was noted for the reaction of (Prⁿ₂N)₃PSe with dibromine, which results in the isolation of equimolar quantities of (Prⁿ₂N)₃PSe₂Br₂ and (Prⁿ₂N)₃PBr₂. The former compound contains both bent and T-shaped geometries for the two selenium atoms, respectively.13

We now report the reaction of some tertiary phosphine sulfides with X_2 (X = I or Br) and IX (X = Br or Cl). Considering the variety and, in some cases, unexpected products obtained from the analogous reactions of the tertiary phosphine selenides, we felt the present study was certainly worthwhile.


Results and discussion

Analytical and spectroscopic data for the tertiary phosphine sulfides and the 1:1 addition compounds R_3PSX_2 ($X_2 = I_2$ or IBr) are displayed in Table 1. The tertiary phosphine sulfides were easily prepared from the direct reaction of the tertiary phosphine with elemental sulfur at room temperature (RT) in diethyl ether according to literature methods.^{4,14} They were treated with X_2 ($X_2 = I_2$ or IBr) in a 1:1 stoichiometric ratio under anhydrous conditions according to eqn. (1). (R = Ph,

$$R_{3}PS + X_{2} \xrightarrow{N_{2}, ca. 2 d} R_{3}PSX_{2}$$
(1)

 Me_2N or C_6H_{11}). All of the compounds were isolated in quantitative yield and proved to be air-stable.

In order to investigate the effects of the R groups on d(I-I) for a given R₃PSI₂ compound (we have previously reported the sensitivity of d(I-I) on R for analogous R₃PSeI₂ compounds¹¹) we decided crystallographically to characterise (Me₂N)₃PSI₂ to compare with Ph₃PSI₂ which was recently reported by Bricklebank and co-workers.¹⁰ Crystals of (Me₂N)₃PSI₂ were easily grown from diethyl ether–dichloromethane (1:1) solution at 50 °C on cooling to room temperature. From the large crop of dark red crystals one was chosen for analysis by single crystal X-ray diffraction. The structure of (Me₂N)₃PSI₂ is illustrated in Fig. 1 and selected bond lengths and angles are given in Table

Fig. 2 The crystal structure of $Ph_3PS(I_{0.89}Br_{0.11})Br$.

2. In common with Ph₃PSI₂, (Me₂N)₃PSI₂ adopts the CT structure with an approximately linear S–I–I bond (177.98(6)°). The d(I–I), 2.856(1) Å, is significantly increased compared to that of solid diiodine, 2.71 Å, as expected since electron density is passed from the sulfur atom to the σ^* antibonding orbitals of the diiodine molecule. Significantly, it is also longer than that reported for Ph₃PSI₂ (2.823(1) Å), clearly illustrating that d(I–I) in R₃PSI₂ compounds is sensitive to R. However, the effect is less pronounced compared to that in the analogous R₃PSeI₂ (the difference in d(I–I) for (Me₂N)₃PSI₂ and Ph₃PSI₂ is 0.033(1) Å; the difference for (Me₂N)₃PSI₂ and Ph₃PSI₂ compared to Ph₃PSI₂, there is also a slight lengthening of the phosphorus–sulfur bond, 2.014(4) Å compared to 1.998(2) Å for Ph₃PSI₂.

Although the ability of Ph₃PS to form a stable 1:1 adduct with iodine monobromide was reported by Zingaro and Meyers,³ no compound of this stoichiometry has been crystallographically characterised. We therefore decided to prepare crystals of Ph₃PSIBr with a view to comparing the resultant crystal structure with that recently reported for Ph₃PSI₂. Crystals of Ph₃PSIBr were prepared from diethyl ether-dichloromethane solution (1:1) by dissolution of the orange powder in the solvent at ca. 50 °C and subsequently allowing the solution to cool slowly to RT. After ca. 3 d, large orange crystals formed in the reaction vessel, one of which was selected for analysis by single crystal X-ray diffraction. The crystal structure of the resultant complex is illustrated in Fig. 2. Selected bond lengths and angles are displayed in Table 3. In fact the compound has the formula $Ph_3PS(I_{0.89}Br_{0.11})Br$ and is isomorphous with the previously reported Ph₃PSI₂. The d(I-Br), 2.6832(6) Å, is increased with respect to that of solid IBr (2.52 Å) as expected with the formation of a CT complex. Unlike Ph₃PI_{1.27}Br_{0.73}, which shows dual occupancy of the halogen sites and is rich in diiodine,¹⁵ Ph₃PSIBr exists as Ph₃PS(I_{0.89}Br_{0.11})Br, *i.e.* although predominantly the heavier halogen is bound to the sulfur atom, the molecule overall is rich in bromine with respect to iodine. The d(S-I) for Ph₃PSIBr is 2.656(1) Å, less than that observed in Ph₃PSI₂, 2.753(2) Å. The d(P-S) 2.007(1) Å, is greater than that observed for Ph₃PSI₂, 1.998(2) Å, although clearly this difference is very slight. Thus Ph₃PSIBr represents the first crystallographically characterised R₃PSIBr compound and verifies the spectroscopic data reported by earlier workers.³

The reaction of R₃PS with Br₂

Unlike the reaction of R_3PS with X_2 ($X_2 = I_2$ or IBr), which produce the 1:1 addition compounds R_3PSX_2 in quantitative yield, the reaction of R_3PS with dibromine is complex. In the case of the reaction of triphenylphosphine sulfide with dibromine two reaction products appear to be formed. Addition of the two reactants in diethyl ether produces after *ca.* 2 d a large quantity of a white solid. The ³¹P-{¹H} NMR spectrum of this material, recorded in CDCl₃, showed a single resonance at δ 51.8, very similar to that previously recorded for Ph₃PBr₂,

Reactants	Product(s)		Mp/°C	Analysis (%), found (calculated)								
		Colour		С	Н	Ν	S	Ι	Br	Cl	³¹ P-{ ¹ H} NMR, δ^a	$\tilde{v}(P-S)/cm^{-1}$
$Ph_3PS + I_2$	$(Ph_3PSI_2)_2I_2 + Ph_3PS$	Red	140 (decomp.)	32.0 (32.0)	2.5 (2.2)	_	4.7 (4.7)	55.2 (56.4)			42.3, 44.0	592, 638
$Ph_{3}PS + IBr$	Ph ₃ PSIBr	Yellow	145 (decomp.)	43.0 (43.1)	3.4 (3.0)	_	6.0 (6.4)	23.8 (25.3)	18.9 (16.0)		42.0	588
$Ph_{3}PS + ICl$	Ph ₃ PSICl	Yellow	138–139	47.1 (47.3)	3.0 (3.3)	_	6.7 (7.0)	27.8 (27.8)	_ `	7.7 (7.8)	42.7	586
$Ph_3PS + Br_2$	$Ph_3PBr_2 + S_8$	White		51.5 (51.2)	3.7 (3.6)	_	_	_ `	37.8 (37.9)	_ `	51.8	
$(Me_2N)_3P + S$	$(Me_2N)_3PS$	White	30-31	36.1 (36.9)	10.0 (9.2)	20.9 (21.5)	15.3 (16.4)				82.4	565
$(Me_2N)_3PS + I_2$	$(Me_2N)_3PSI_2$	Red	49-50	16.3 (16.0)	4.3 (4.0)	9.5 (9.4)	8.0 (7.1)	55.4 (56.6)			73.8	544
$(Me_2N)_3PS + IBr$	$(Me_2N)_3PSIBr$	Yellow	99-100	18.3 (17.9)	4.8 (4.5)	10.6 (10.4)	8.6 (8.0)	30.9 (31.6)	20.6 (19.9)		70.1	538
$(Me_2N)_3PS + ICl$	(Me ₂ N) ₃ PSICl	Yellow	90–91	20.9 (20.1)	5.3 (5.0)	11.9 (11.7)	9.1 (9.0)	34.8 (35.5)		9.5 (9.9)	69.6	540
$(Me_2N)_3PS + Br_2$	$[{(Me_2N)_3PS}_2S]^{2+} 2[Br_3]^{-}$	Yellow	66–68	16.4 (16.0)	4.2 (4.0)	9.3 (9.3)	10.0 (10.6)		50.0 (53.4)	_	Insoluble	
$(C_6 H_{11})_3 P + S$	$(C_{6}H_{11})_{3}PS$	White	183–184	70.0 (69.2)	10.7 (10.6)	_	9.9 (10.3)				62.7	629
$(C_6H_{11})_3PS + I_2$	$(C_6H_{11})_3PSI_2$	Dark Red	173-174	38.1 (38.2)	6.1 (5.8)		5.6 (5.7)	44.8 (44.9)			58.4	583
$(C_6H_{11})_3PS + Br_2$	$(C_6H_{11})_3PSBr_2$	Yellow	121-122	44.2 (45.8)	7.0 (7.0)		5.7 (6.8)	33.6 (33.9)			103.9 ^b	573

Table 1 The reaction of R_3P with S and R_3PS with X_2 (R = Ph, Me_2N or C_6H_{11} ; $X_2 = I_2$, IBr, ICl or Br_2); analytical and spectroscopic data for the products formed

Table 2 Selected bond lengths (Å) and angles (°) for (Me₂N)₃PSI₂

I(1)–I(2) I(1)–S(1)	2.856(1) 2.705(3)	P(1)–S(1)	2.014(4)
S(1)–I(1)–I(2) N(2)–P(1)–N(1)	177.98(6) 102.6(3)	N(2)–P(1)–S(1)	118.4(4)

Table 3 Selected bond lengths (Å) and angles (°) for $Ph_3PS(I_{0.89}\text{-}Br_{0.11})Br$

S(1)–I(1) I(1)–Br(2)	2.656(1) 2.6832(6)	P(1)–S(1)	2.007(1)
S(1)–I(1)–Br(2)	175.13(2)	P(1)–S(1)–I(1)	107.63(5)

 δ 49.2.¹⁶ Elemental analysis of this solid confirms its identity as Ph₃PBr₂ [Found (Calc.): C, 51.5 (51.2); H, 3.7 (3.6); Br, 37.8 (37.9)%]. Concentration of the resultant filtrate produced some pale yellow crystals, one of which was selected for analysis by single crystal X-ray diffraction. A unit cell determination of this material revealed it to be S₈. Clearly, reaction of Ph₃PS with dibromine results in the cleavage of the phosphorus–sulfur bond, eqn. (2).

$$8 \operatorname{Ph_3PS} + 8 \operatorname{Br_2} \frac{\operatorname{N_2, ca. 2d}}{\operatorname{Et_5O, RT}} 8 \operatorname{Ph_3PBr_2} + S_8 \qquad (2)$$

This result is in direct contrast to the analogous reaction of triphenylphosphine selenide with dibromine¹³ which, in solvents of low relative permittivity, produces the T-shaped adduct Ph₃PSeBr₂, analogous to $(Me_2N)_3PSeBr_2$ and $(C_6H_{11})_3PSeBr_2$ previously described. However, reaction of Ph₃PSe with Br₂ in solvents of higher relative permittivity, *e.g.* CH₂Cl₂, produces the unusual dinuclear complex [Ph₃PSeBrSePPh₃]Br·2CH₂Cl₂, thus illustrating that the phosphorus–sulfur bond is more susceptible to cleavage upon reaction with dihalogens than the phosphorus–selenide bond.

In order to gain further information concerning the reaction of R₃PS with dibromine, we also investigated the reaction of $(C_6H_{11})_3PS$ with dibromine in diethyl ether solution. Reaction of dibromine with this triorganophosphine sulfide appeared to proceed in a different way than the analogous reaction with Ph₃PS, described above. Tricyclohexylphosphine sulfide reacts with dibromine over ca. 2 d to produce a yellow solid. Elemental analysis of this material suggests the formation of a 1:1 adduct, (C₆H₁₁)₃PSBr₂, Table 1. Further evidence for this adduct formation may be inferred from its IR spectrum, clearly illustrating a band due to the phosphorus-sulfur stretch, thus confirming that, in contrast to the reaction of Ph₃PS with Br₂, which results in cleavage of the P-S bond to produce Ph₃PBr₂, reaction of (C₆H₁₁)₃PS does not result in cleavage of the P-S bond. Moreover, v(P-S) for $(C_6H_{11})_3PSBr_2$, 573 cm⁻¹, is shifted downfield compared to v(P-S) for the parent tricyclohexyl-phosphine sulfide, 629 cm⁻¹. Both we ¹¹⁻¹³ and other workers ^{3,10} have previously noted both in the present and previous studies that this is a good indication of adduct formation since v(P-S)shifts to lower frequency upon co-ordination of a halogen atom to the sulfur donor, as expected. Final confirmation of the formation of $(C_6H_{11})_3PSBr_2$ should be provided by its ³¹P-{¹H} NMR spectrum, which would be expected to exhibit a single peak, shifted from that observed from the parent tertiary phosphine selenide. Unfortunately, $(C_6H_{11})_3PSBr_2$ is insoluble in non-polar solvents. Dissolution of the material in polar solvents such as CDCl₃ results in cleavage of the P-S bond to produce $(C_6H_{11})_3PBr_2$ and, presumably, elemental sulfur, since a single resonance at δ 103.9 is observed which is very close to the reported value for tricyclohexylphosphine dibromide.16 This behaviour mirrors the triphenylphosphine sulfide-dibromine system, although in this case P-S bond cleavage occurs regardless of the relative permittivity of the solvent.

Table 4 Selected bond lengths (Å) and angles (°) for $[\{(Me_2N)_3-PS\}_2S]^{2+}\ 2[Br_3]^-$

Br(1)-Br(2)	2.506(1)	S(1)–S(2)	2.032(3)
Br(2)-Br(3)	2.538(1)	S(1) - P(1)	2.119(3)
Br(4) - Br(5)	2.550(1)	S(2) - S(3)	2.053(3)
Br(5)-Br(6)	2.521(1)	S(3)–P(2)	2.079(3)
Br(1)–Br(2)–Br(3)	176.51(5)	S(1)–S(2)–S(3)	104.7(1)
Br(6)-Br(5)-Br(4)	177.38(5)	S(2) - S(3) - P(2)	100.7(1)
S(2)–S(1)–P(1)	104.2(1)		

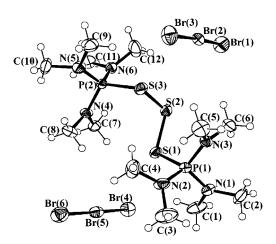


Fig. 3 The crystal structure of $[{(Me_2N)_3PS}_2S][Br_3]_2$.

In a final attempt crystallographically to characterise the elusive R₃PSBr₂, we decided to treat (Me₂N)₃PS with Br₂ in diethyl ether solution. This tertiary phosphine sulfide was chosen since it contains a very basic parent tertiary phosphine and we have previously reported that the analogous compound, (Me₂N)₃-PSe, reacts with dibromine to produce (Me₂N)₃PSeBr₂ quantitatively.¹² In the reaction of (Me₂N)₃PS with Br₂, after ca. 2 d a large quantity of yellow powder was produced which was isolated by standard Schlenk techniques. Recrystallisation of the product from diethyl ether solution (dichloromethane was avoided since the use of this solvent may have resulted in cleavage of the phosphorus-sulfur bond) at 50 °C produced, on standing at room temperature for ca. 5 d, a small crop of yellow-orange crystals which we assumed to be (Me₂N)₃PSBr₂. The crystals were plunged into an inert oil under anaerobic conditions and examined under the microscope. From these, one was chosen for analysis by single crystal X-ray diffraction. Surprisingly, the material proved to be the unusual ionic compound $[{(Me_2N)_3PS}_2S]^{2+} 2[Br_3]^-$, Fig. 3, and not the expected 1:1 addition compound (Me₂N)₃PSBr₂. Selected bond lengths and angles are in Table 4. Clearly, this material cannot be considered as representative of the only bulk product from the reaction of (Me₂N)₃PS with Br₂, but it is nevertheless isolated in significant yield (ca. 30%) and provides an interesting insight into the complex reaction of certain R₃PS compounds with dibromine. One possible other product is the free phosphine $(Me_2N)_3P$, although this was not observed in the ³¹P-{¹H} NMR spectrum of the bulk material. It is possible to speculate that during the reaction phosphorus-sulfur bond cleavage has again occurred, but only for some of the (Me₂N)₃PS molecules. The free elemental sulfur thus produced may then react with dibromine to produce transient dications (e.g. SBr_2) which then react with other (Me₂N)₃PS moieties producing the dipositive cation $[{(Me_2N)_3PS}_2S]^{2+}$, the charge being balanced by tribromide anions. Again, no evidence for a sulfur-bromine bond is observed. No cation of the formula [(R₃PS)₂S]²⁺ has previously been crystallographically characterised; however, the analogous tellurium containing cation, [(But₃PTe)₂Te]²⁺, has been described by Kuhn et al.¹⁷ This cation may be considered as a tellurophosphorane Te²⁺ complex or as a phosphine stabil-

Table 5	Crystal data and	details of refinement for	Ph3PS(I0.89Br0.	11)Br, R3PSI2 ar	nd $[(R_3PS)_2S][Br_3]_2$ (R =	Me_2N)
---------	------------------	---------------------------	-----------------	------------------	--------------------------------	-----------

		$Ph_3PS(I_{0.89}Br_{0.11})Br$	$(Me_2N)_3PSI_2$	$[{(Me_2N)_3PS}_2S][Br_3]_2$
F	ormula	C ₁₈ H ₁₅ BrIPS	C ₆ H ₁₈ I ₂ N ₃ PS	$C_{12}H_{36}Br_6N_6P_2S_3$
Λ	1	501.14	449.06	902.04
7	7K	203(2)	203(2)	203(2)
C	rystal system	Monoclinic	Orthorhombic	Triclinic
	pace group	$P2_1/c$	$Cmc2_1$	ΡĪ
	Å ² 1	12.352(2)	10.878(1)	8.429(2)
b	/Å	9.386(1)	9.0848(9)	9.972(2)
С	′Å	15.298(2)	14.213(2)	19.282(4)
a		_	_	80.66(2)
β		95.47(2)	_	81.18(2)
21				74.33(2)
	//Å ³	1765.5(4)	1404.6(3)	1529.5(6)
Z		4	4	4
и	$/cm^{-1}$	42.80	47.10	81.98
Ŕ	eflections collected	3249	688	5871
C	bserved reflections	3249	688	5361
F	inal R1, wR2 $[I > 2\sigma(I)]$	0.0295, 0.0724	0.0323, 0.0827	0.0544, 0.1176
	(all data)	0.0410, 0.0779	0.0326, 0.0830	0.1048, 0.1386

ised Te₃ dication. This description is equally valid for [{ $(Me_2N)_3$ -PS}₂S]²⁺ described here, which could be considered as either a tertiary phosphine sulfide S²⁺ complex or as a phosphine stabilised S₃ dication. The sulfur–sulfur bond distances, 2.032(3) and 2.053(3) Å, are fairly typical for a single bond, 2.05 Å, thus indicating that little or no S–S double bond character is observed in this dication. A similar situation is observed for the tellurium analogue [(But₃PTe)₂Te]²⁺, d(Te-Te) = 2.713(1), 2.715(2) Å; d(Te-Te) for organic ditellurides = 2.70 Å.

Experimental

The compounds R_3PS were either obtained commercially (R = Ph) (Lancaster) or easily prepared from the direct reaction of the appropriate tertiary phosphine with elemental sulfur, according to literature methods.¹⁴ Reaction time was approximately 1 d. Reaction of the tertiary phosphine sulfides with dihalogens or interhalogens was carried out under anaerobic and anhydrous conditions, although it was later noted that the complexes R_3PSI_2 and R_3PSIBr are moisture-stable. All manipulations of the compounds were performed inside a Vacuum Atmospheres HE-493 glove-box. Diethyl ether (BDH) was dried by standing over sodium wire for *ca*. 1 d, refluxed over CaH₂ in an inert atmosphere (N_2) and distilled directly into the reaction vessel. Anhydrous CH₂Cl₂ was obtained commercially and used as received, as were the dihalogens (I_2 , Br_2) and iodine monobromide (Aldrich).

The R_3PSX_2 compounds ($X_2 = I_2$ or IBr) were synthesized in the same way, that of Ph₃PSIBr being typical. Triphenylphosphine sulfide (2.00 g, 6.80 mmol) was suspended in Et₂O (*ca.* 75 cm³) and subsequently iodine monobromide (1.41 g, 6.80 mmol) added. After *ca.* 2 d the resultant dark red (R_3PSI_2) or orange (R_3PSIBr) solid was isolated using standard Schlenk techniques. The solids were then transferred to pre-dried argonfilled ampoules which were flame sealed.

Elemental analyses were performed by the analytical laboratory of this department. The ³¹P-{¹H} NMR spectra were recorded as CDCl₃ solutions on a Brüker AC200 high resolution multiprobe spectrometer relative to concentrated phosphoric acid as standard, IR spectra on a Nicolet 5PC FT spectrometer.

Crystallography

Crystals of all three compounds were independently submerged in an inert oil under anaerobic conditions and suitable ones were chosen by examination under a microscope. The crystals, with their protective coating of oil, were then independently mounted on glass fibres and transferred to the diffractometer and cooled to 203(2) K in the cold gas stream derived from liquid nitrogen. All measurements were performed on a Nonius MAC 3 CAD 4 diffractometer employing graphite-monochromated Mo-K α radiation ($\lambda = 0.71069$ Å) and $\omega - 2\theta$ scans. The structures were solved by direct methods. Unit-cell dimensions were derived from the setting angles of 25 accurately centred reflections. Lorentz-polarisation corrections were applied. Details of the X-ray measurements and subsequent structure determinations are presented in Table 5. During refinement of Ph₃PSIBr it was noticed that the iodine vibrational ellipsoid was significantly larger than those of the surrounding atoms. The iodine site was therefore refined as a mixture of I and Br atoms, which converged to give a crystal composition of 89% Ph₃PSIBr and 11% Ph₃PSBrBr. A similar treatment of the terminal Br indicated that it should remain a purely Br site. Hydrogen atoms were confined to chemically reasonable positions. Neutral atom scattering factors were taken from ref. 18, anomalous dispersion effects from ref. 19. The structure determinations were performed using SHELXS 86 and refinement based on F^2 by using SHELXL 93 crystallographic software packages.^{20,21}

CCDC reference number 186/1468.

See http://www.rsc.org/suppdata/dt/1999/2225/ for crystallographic files in .cif format.

Acknowledgements

We are grateful to the EPSRC for a research studentship to S. L. J.

References

- 1 R. A. Zingaro and R. M. Hedges, J. Phys. Chem., 1961, 65, 1132.
- 2 R. A. Zingaro, Inorg. Chem., 1963, 2, 192.
- 3 R. A. Zingaro and E. A. Meyers, Inorg. Chem., 1962, 1, 771.
- 4 W. Tefteller and R. A. Zingaro, Inorg. Chem., 1966, 5 2151.
- 5 R. A. Zingaro, R. E. McGlothlin and E. A. Meyers, J. Phys. Chem., 1962, 66, 2579.
- 6 W. W. Schweikert and E. A. Meyers, J. Phys. Chem., 1968, 72, 1561.
- 7 F. Lux, R. Paetzold, J. Danel and L. Sobczky, J. Chem. Soc., Faraday Trans. 2, 1975, 1610.
- 8 S. Kaur and T. S. Lobana, J. Inorg. Nucl. Chem., 1981, 43, 2439.
- 9 S. Kaur and T. S. Lobana, J. Indian Chem. Soc., 1983, 60, 126.
- 10 D. C. Apperley, N. Bricklebank, S. L. Burns, D. E. Hibbs, M. B. Hursthouse and K. M. Abdul Malik, J. Chem. Soc., Dalton Trans., 1998, 1289.
- 11 S. M. Godfrey, S. L. Jackson, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1997, 4489.
- 12 S. M. Godfrey, S. L. Jackson, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1998, 4201.
- 13 S. M. Godfrey, S. L. Jackson, C. A. McAuliffe and R. G. Pritchard, unpublished work.

- 14 D. W. Allen and B. F. Taylor, J. Chem. Soc., Dalton Trans., 1982, 51.
 15 N. Bricklebank, S. M. Godfrey, C. A. McAuliffe and R. G. Pritchard, J. Chem. Soc., Dalton Trans., 1993, 2261.
 16 S. M. Godfrey, C. A. McAuliffe, I. Mushtaq, R. G. Pritchard and J. M. Sheffield, J. Chem. Soc., Dalton Trans., 1998, 3815.
 17 N. Kuhn, H. Schumann and R. Bosse, J. Chem. Soc. Chem.
- 17 N. Kuhn, H. Schumann and R. Boese, J. Chem. Soc., Chem. Commun., 1987, 1257.
- 18 International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.2A.
- International Tables for X-Ray Crystallography, Kynoch Press, Birmingham, 1974, vol. 4, Table 2.3.1.
 G. M. Sheldrick, SHELXS 86, in Crystallographic Computing 3, ed. G. M. Sheldrick, Oxford University Press, 1985, p. 175.
 G. M. Sheldrick, SHELXL 93, University of Göttingen, 1993.

Paper 9/02433F